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A theoretical investigation was made of the inelastic behavior of polycrystal!ine metal- 
llc materials on the basis of dislocation representations, developed in [1-3]. A kinetic 
equation of one-dimensional deformation of a medium was obtained in [i, 2]. In the present 
article an evaluation is made of a possible variant of the generalization of the one-dimen- 
sional equations of motion of a medium with structural defects for the case of three-dimen- 
sional deformation. 

i. In a wide range of change in the deformation rates and temperatures, the microstruc- 
rural mechanisms of the dynamics of dislocations determine the inelastic behavior of metallic 
materials. In the general case, the density of the dislocations is described by a tensor of 
the second rank [4]. However, for media with a chaotic orientation of monocritical grains, 
it can be assumed that the density is described by the scalar parameter n. Thus, in addition 
to the determining parameters of the medium (s is the tensor of the elastic deformations 
and s is the entropy), used in the thermodynamics of elastic media, internal parameters are 
introduced, characterizing the changes of the structure during the deformation process. If 
the formation of defects in the continuity of the material (cracks, micropores) are not con- 
sidered, then, for polycrystalllne metallic aggregates, the change in the structure can be 
characterized by the mean density of the dislocations (the mean number n of dislocation lines 
intersecting a unit area) and a parameter characterizing the granularity of the material ~. 
With such a choice of the determining parameters of the medium, as the thermodynamic poten- 
tial it is convenient to take the function of the internal energy 

U = U~e~ 8~ n~ ~). 

The first origin of the thermodynamics is written in the form [5] 
A 

~c = Sp ~ ~ + @~, (1.1) 
^ 

where ~ is the stress tensor; 0 is the instantaneous density of the material; ~ is the tensor 
of the total deformations; qe is the external heat influx. Further, we shall assume the addl- 
tivity of the rates of elastic and plastic deformations 

~ldt  = d%/dt + d~pldt,: 

as well as the incompressibility of the plastic deformations 

S ~  v = O. 

The second origin of the thermodynamics is written in the form 

q' is the uncompensated heat. We take 

dq' =6 Sp ~ dap,, 

(1.2) 

(1.3) 

where S is the fraction of the work in plastic deformations going over into heat; here 0 < 
B < i. Equation (i.i), taking account of (1.2), (1.3), can be rewritten in the form 

(1.4) 

Krasnoyarsk. Moscow. Translated from Zhurnal Prikladnoi Mekhanlki i Tekhnicheskoi 
Fiziki, No. 6, pp. 147-153, November-December, 1979. Orlginal article submitted March 1, 
1979. 

0021-8944/79/2006-0779507.50 �9 1980 Plenum Publishing Corporation 779 



We write relationship (1.4) in the form 

~ d ~  + au ~u au ~ -- Sp 08, ' ~ ds + ~ dn + ~ -  d~ = Sp ~- ds, + Tds + ( l  - -  ~) Sp d~p. 

From the last equality there follow the equations of state 

^ au/s (~ = .~ T = #U/#s,: 

1 - ~ = p ~ ~ + ~ ~)pp~-~, 

where (i -- 8) is the fraction of the work in the plastic deformations expended for formation 
of defects, their growth, and motion [3]. 

For determination Of the fraction of work in plastic deformations, expended for the 
formation of the defects of their structure and their dynamics, on the basis of determining 
physical considerations, we must write the kinetic equations 

tin~dr = / . ~ . ~  s,~ n,..),~ d, /dt  = f . (~ . ,  s, n,, . )  

and the equation for the tensor of the rates of plastic deformations 

& p / d t  ---- f (~, :  s, n, ~). (1 .5 )  

A one-dlmenslonal analysis of the deformation, creep, and superplasticity of metallic 
materials, given in [I, 2], makes it possible to write a kinetic equation for the mean 
density of the dislocations in the form 

dn/dt = mbnu, -- a~bnud,: (1.6) 

where m - m(T, ~) is the coefficient of multiplication; b is a Burgers vector for unit 
translation; u s = Us(T, T, n, ~) is the mean conservation rate of sllp of the dislocations; 
a d -- ad(T, ~) is the coefficient of annihilation of dislocations of different signs as a 
result of diffusion; u d ffi Ud(T, T, n, ~) is the nonconservative velocity of the motion of the 
dislocations (the diffusional component of the velocity). The first term in the right-hand 
part of Eq. (1.6) describes multiplication of the dislocations as a result of multiple trans- 
verse sllp and determines the hardening of the material, and the second term describes the 
annihilation of the dislocations of different signs due to diffusion at short distances, and 
determines the recovery of the mechanical properties of the material (relaxation); T ffi (o, -- 
ua)/2 [2]; oi and a2 are the components of the stress tensor. 

During the process of the deformation of polycrystalline materials under high-temperature 
conditions, there can be growth of the grains. In accordance with the theory of the growth 
of grains, developed in [6], we have 

where O is a numerical coefficient (O = 0.5-1); G is the elastic shear modulus; ~c is the 
critical radius of a grain, after which it starts to grow. In a wide range of change in the 
deformation rates and the temperatures we can set ~ ffi const. 

For the case of three-dimensional deformation of polycrystalline materials, we take the 
kinetic equations in the form 

dn/dt = re(T, ~t)bnus(Tm, T, n, ~t) --  aa(T, u)bnua(Tm, r~ n,; ~); (1.7) 

d~/dt = 

where Tm = ~ is the intensity of the maximal shear stresses; in the case of one-dimen- 
sional deformation, m m ffi T; T is the tensor of the maximal shear stresses. 

2. In accordance with the Cayley--Hamilton theorem [5], the tensor function (1.5) can 
be represented in the following manner: 

.~ = AI 'n  u B~. -t- C~,: (2.  l )  

where the coefficients A, B, and C depend on the basic invariants of the tensor ~e and the 
parameters s, n, M. As a result of the smallness of the elastic deformations, the third 
term in relatlonshlp (2.1) can be disregarded 
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? = A I - ~  B~e. (2 .2)  

We s h a l l  f u r t h e r  assume t h a t ,  i n  a s m a l l  p h y s i c a l  vo lume,  t h e r e  i s  an i d e n t i c a l  number 
of dislocations of opposite sign so that the total field of the stresses created by these 
dislocations is equal to zero. For small elastic deformations, we limit ourselves to the 
principal linear part of the equation of state [3] 

---- ~ ( 1 ,  -~ lDp( l  -t- { z ( r  - -  To) , ( 2 . 3 )  

where a is the coefficient of linear thermal expansion. Using relation (2.3), from (2.2) we 
ob tain 

.7 = A ' I  + B ' $ ,  A '  = A - -  -~- ~ p ~ n  ~ ( r  - -  To) , B '  B (t + v) = E " (2.4) 

Taking account of the plastic incompressibility of the material, we obtain a connection be- 
tween the coefficients A' and B' 

A' = B'p. (2.5) 

Substituting (2.5) into (2.4) we obtain 

d~p/dt = ~ ' / ~ ,  ~ = t /B '~  (2 .6)  

where ~' is the deviator part of the stress tensor; ~ is the coefficient of the shear viscos- 
ity. Introducing the intensity of the rates of the maximal plastic shears 

~ f  I ^: 
dye~dr = V~ Sp?p, 

where y~ is the tensor of the rates of the maximal plastic shears, from (2.6) we obtain an 
expression for ~: 

= % , ~ ( d y e ~ d r ) .  (2 .7)  

Substituting (2.7) into (2.6), we obtain 

? ( d ? ~ / d t ) .  (2.8) 

Relation of type (2.8) in different theories of plasticity have been obtained on the basis 
of other assumptions [7]. Here we use the assumptions of the smallness of the elastic 
deformations and the incompressibility of the plastic deformations, and the connection (1.5) 
is postulated. 

In the case of monoaxial deformation of samples of a polycrystalline metallic material, 
in [i, 2] it was assumed that the slip plane of the dislocations coincide with the plane of 
the action of the maximal shear stresses, and that the Orovan equation, connecting the rate 
of the maximal plastic shears with the maximal shear stress and the kinetic parameters, was 
written in the form [1] 

1 
d?~fd t  = bnu,  (~, T, n, z)~ ?~ = ~ (&ip --  8~p),: 

where g,p and Cap are the components of the tensor of the plastic deformation. For the case 
of the three-dimensional deformation of polycrystalline materials, we generalize the Orovan 
equation in the form 

d ? ~ /  dt  = bnu,  (Tin, T ,  n,  z) .  

3. We consider a body under the action of external forces in a state of equilibrium 
occupying a small simply connected volume in Euclidean space xz, x2, xs. Let the stressed 
state of the body be obtained by the deformation x = x(a), det (~x/~a) > 0from someinitial 
state. At the moment of time t, the body is loaded elastically. Under these circumstances, 
it undergoes the deformation ~ = ~(x). In terms of infinitely small vectors of the tangen- 
tlal spaces at the points a, x, and ~, we can write 

dx = Xda, dx = Xed~, 
where X = ~x/~a  and Xe = ~ x / ~  a r e  t h e t r a n s f o r m a t i o n  m a t r i c e s .  The r e s i d u a l  d e f o r m a t i o n  i s  
c h a r a c t e r i z e d  by t h e  m a t r i x  
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Then, the matrix of the total transformation is represented in the form of the product of 
the matrices of the elastic and plastic deformations 

From the last equality there follows an equation for the evolution of the loaded state 
during the relaxation process (dX/dt - 0) 

d X e / d t = O ; X e ,  ~ ; = - - - * e ~ - - p  , �9 (3.1) 

The metric tensor of the elastic deformations is determined by the relation 

~= (~:,)* (~:,). 

Postulating plastic incompressibility of the material, for the density of the material we 
have 

p = p0/V d~t ~ 

As a result of the equation for Xe, (3.1) is the equation for the metric tensor 

d~/dt= -- ( ~ ; ) ' - -  (~;) .  
Further we denote by ~" and ~" the symmetrlcal and antisymmetrlcal parts 

' p P 

~ = ~ ^ ^ ~ [O~-(O~)'L 

where ~ is the tensor of the rates of plastic rotations. Using an analysis analogous to 
that for the function 3 (1.5), it can be shown that, for an isotropic material, ~; = O. 

In a Euler system of coordinates, we write a closed system of equations of motion for 
a medium with a defect structure: 

the equation of the conservation of mass 

P = Po/V det~ (3.2) 

the equation of the momenta pdv/dt + dlv~ ffi O, where v is the vector of the mass velocity; 

the equation for the metric tensor 

~/d t  = - e [~  + ~ j  + F:J ; 

the equation for the tensor of the stresses 

= 0aura;.; 
the equation for the shear viscosity 

IL = ~ l b n u . ( ~ ,  T,. ,  x); 
the ratio for the tensor of the elastic deformations 

~,/dt = - ~ : e i ;  
the Orovan equation 

dTVmldt = bnu. (%., T, n, ~r 

the equation for the entropy 

au ou 1" 

the equation for the temperature 

T = OU/Os. 
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If the kinetic equations (1.7), (1.8) are given, as well as the function of the internal 
~nergy% then the system (3,2)is foundto beclosed andcan beused todetermine theparameters p, 
X, v, ~, ~, ~Pm, ~p, s, T, e e. 

4. Let us consider the one-dimenslonal motion of the medium and  write a system of 
equations describing this motion. Let the medium move parallel to the axis which we desig- 
n.ate bythe subscript i, with the velocity v = v(x, t), where x is an Euler coordinate. We 
note that such a deformation is a deformation at the principal axes, and, in an isotropic 
medium, the tensors of the stresses and the elastic deformations are coaxial. Let (~,, Xa, 
Xs) and (ux, as, us) be, respectively, the elastic elongations and the stresses along the 
principal axes; here Xa = Xs and ua = us. For the metric tensor and the tensor of the 
stresses, we have [8] 

~= 0 X~ 0 , ~ =  G~O . 

0 0 ~ 2  0 % 

Introducing, instead of the elongations X,, Xa, Xs, the components of the tensor of the 
elastic deformations 

ele =In ~,ese =In ~,ese = I n  ~a,: 

we obtain the results that, for the one-dimenslonal case, the system of equations is written 
in the following form: 

the equation for the density of the material 

the equation of the momenta 

P = Po exp (--exe - -  2eme); 

Or Or) Oo 1 
p ~ + v ~  o~ = 0 ;  

the equation for the component of the tensor of the elastic deformations 
t P 

O~le O~le 0/) (Yl Oe2e --{- U 082e - -  0"2" 
- ~ -  + v...bx = oz {~ ' o't oz ' ~ ' 

the relationship for the shear viscosity 

the equation for the entropy 

the equation of state 

~t = ~/bnus('% T ,  n ,  x); 

OU 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

% =  pOU/Oele~ % = pOU/Oeme~ T = OU/Os. ( 4 . 6 )  

Here it is assumed that ~ = const. For large deformation rates, which are attained with high- 
speed deformation of materials, we can use the dependence between the mean rate of the dis- 
locations Us, the maximal shear stress T, and the mean density of the dislocations n, pro- 
posed in [9]: 

= u , (4.7) 

where c s is the elastic transverse speed of sound; r, and n, are kinetic parameters, depend- 
ing on the previous treatment of the material (annealing, irradiation, etc.), the temperature, 
and the granularity. In the case of high-speed loading, in the stage of active loading (at 
the front of the shock wave), dlffuslonal mechanisms of the motion of the dislocations are 
not able to develop to a sufficient degree and the kinetic equation (1.7) is written in the 
form 

d n ~ t  = re(T , ,  •  T ,  n,  ~). (4.8) 

The dependences of the kinetic parameters on the granularity and the temperature are deter- 
mined from the analysis of one-dimensional problems, analogously to [1]. If these depen- 
dences are known, then, the system (4.1)-(4.8) is found to be closed. In the case T = const 
and ~ = const, in [i, 2] a numerical calculation of the system (4.1)-(4.8) is given, with 
application to the problem of a plane collision between plates. 
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